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Abstract
For one-dimensional non-relativistic quantum mechanical problems, we
investigate the conditions for all the position dependence of the propagator
to be in its phase, that is, for the semi-classical approximation to be exact. For
velocity-independent potentials we find that: (i) the potential must be quadratic
in space, but can have arbitrary time dependence, (ii) the phase may be made
proportional to the classical action, and the magnitude (‘fluctuation factor’)
can also be found from the classical solution and (iii) for the driven harmonic
oscillator the fluctuation factor is independent of the driving term.

PACS numbers: 03.65.−w, 03.65.Ca

1. Exactness of the semi-classical approximation

In non-relativistic quantum mechanics one mathematical object of interest is the propagator.
It is defined by

ψ(x, t) =
∫

K(x, t; x0, t0)ψ(x0, t0) dx0 (1)

and satisfies

(H − ih̄∂t )K(x, t; x0, t0) = −ih̄δ(x − x0)δ(t − t0). (2)

It can be in principle directly calculated by the path integral technique [1]:

K(x, t; x0, t0) =
∫

Dx eiS/h̄. (3)

As is proven in any treatment of path integrals (e.g. [2–4]), for some problems such as the
free particle and the harmonic oscillator the propagator takes the form

Ksc(x, t; x0, t0) = f (t − t0) eiScl(x,t;x0,t0)/h̄, (4)
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where Scl is the action of the classical path. This is sometimes called the semi-classical
approximation since the contribution to the propagator (4) seems to be from the classical path
only, even though the integral (3) was over all possible paths.

It was claimed at least once [5] that all path integrals reduce to classical paths. The
particular argument of [5] was shown to be incorrect [6], but for which problems is the
semi-classical approximation exact? This question is discussed and left open in [3], where
counterexamples are given to argue against universal exactness.

Thus we would like to investigate under what conditions (4) remains valid. We will
assume that the Hamiltonian is of the form

H = p2

2m
+ V (x, t) (5)

i.e. we limit ourselves to the case of a potential independent of velocity, but which may depend
on time. We consider t > t0, for which the right-hand side of (2) vanishes. Also using (4)
with Scl → S and (5), the general equation (2) reduces in our case to

−ih̄∂t [f (t) eiS(x,t;x0,t0)/h̄] − f (t)
h̄2

2m
∂2
x [eiS(x,t;x0,t0)/h̄] + V (x, t)f (t) eiS(x,t;x0,t0)/h̄ = 0. (6)

For the time being we will take S to be any function of x and t, with x0 and t0 as parameters.
Equation (6) gives

−ih̄
ḟ (t)

f (t)
+

∂S

∂t
+ V (x, t) − ih̄

2m

∂2S

∂x2
+

1

2m

(
∂S

∂x

)2

= 0. (7)

Since S and V (x, t) are real, the real part of (7) is

∂S

∂t
+ V (x, t) +

1

2m

(
∂S

∂x

)2

+ Re

[
−ih̄

ḟ (t)

f (t)

]
= 0 (8)

and the imaginary part is

−h̄

2m

∂2S

∂x2
+ Im

[
−ih̄

ḟ (t)

f (t)

]
= 0 (9)

from which it follows that ∂2S/∂x2 is a function of t only:

∂2S

∂x2
= 2F(t) ⇒ S(x, t) = F(t)x2 + G(t)x + J (t). (10)

Putting this expression for S and its derivatives into (8) and rearranging, we get(
Ḟ +

2F 2

m

)
x2 +

(
Ġ +

2FG

m

)
x +

(
J̇ +

G2

2m
+ I

)
+ V (x, t) = 0, (11)

where

I (t) = Re

[
−ih̄

ḟ

f

]
. (12)

The expressions in parentheses have no x dependence. Therefore the potential can be written
as

V (x, t) = F1(t)x
2 + G1(t)x + J1(t). (13)

So (4) is satisfied for velocity-independent, quadratic potentials and a general function S in
the exponential.

To find the relation of S to the classical path, we must find the classical solution. For this
we impose

m
dẋ

dt
= −∂V

∂x
= 2Ḟ x + Ġ +

2F

m
(2Fx + G). (14)
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The left-hand side is a total derivative; therefore the right-hand side must also be a total
derivative. This gives

2Fx + G

m
= ẋ. (15)

In other words we have reduced the problem of the solution of the equation of motion for a
given potential of the form (13) to the solution of a series of first-order differential equations:
First from F1 and G1 one can calculate F and G via the correspondence of (11) and (13), then
x(t) can be found via (15). These equations are not the corresponding Hamilton’s equations.

Let us now calculate the Lagrangian as a function of x and t:

L = m

2
ẋ2 − V (x, t)

=
(

4F 2

m
+ Ḟ

)
x2 +

(
Ġ +

4FG

m

)
x +

G2

m
+ J̇ + I. (16)

On the other hand let us consider the total time derivative of S(x, t):

dS

dt
= ∂S

∂t
+

∂S

∂x

dx

dt

= Ḟ x2 + Ġx + Ḣ + (2Fx + G)ẋ

=
(

4F 2

m
+ Ḟ

)
x2 +

(
Ġ +

4FG

m

)
x +

G2

m
+ J̇ , (17)

where in both (16) and (17), we used (15) to express ẋ in terms of x and t. The expressions
for L and dS

dt
agree for I (t) = 0. Therefore we have shown that S is the classical action Scl if

Re

(
−ih̄

ḟ

f

)
= 0 (18)

i.e. ḟ /f is real.
To summarize, the propagator can be written in the form (4) only for quadratic potentials

given in (13). Then the classical action is written in the form (10), and the functions that
constitute the potential and the classical action are related by

F1 = −
(

Ḟ +
2F 2

m

)
, G1 = −

(
Ġ +

2FG

m

)
, J1 = −

(
J̇ +

G2

2m

)
. (19)

The fluctuation factor f can also be found from the classical solution using

−F

m
− ḟ

f
= 0. (20)

The integrations for finding F,G, J from F1,G1, J1 will bring integration constants
which must be expressed in terms of x0 and t0, since these are the parameters of Scl(x, t) and
do not appear in V (x, t).

To identify these constants we have two conditions at our disposal: first, when solving
the classical equation of motion, at the initial time and position, the initial velocity ẋ0 must
be freely specifiable. Therefore (15) must give an undefined result for ẋ at x0, t0. The second
condition is that S(x0, t0) must be zero.

Equation (20) also means that f is a real function times a complex constant. The constant
can be found by considering

lim
t→t0

K(x, t; x0, t0) = δ(x − x0). (21)
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2. Applications

2.1. Free particle

For a free particle F1 = G1 = J1 = 0, which yields

F = m

2(t + C1)
, G = C2

t + C1
, J = C3 +

C2
2

(t + C1)2m
.

For the classical solution we get

ẋ = 2Fx + G

m
= x + C2/m

t + C1
. (22)

From the free specifiability of ẋ0 we find

x0 + C2/m = 0, t0 + C1 = 0.

On the other hand, S(x0, t0) condition gives

S(x0, t0) = (mx0 + C2)
2

2m(t0 + C1)
+ C3 = ẋ0

2m
(mx0 + C2) + C3 = 0

which means that C3 = 0.
Putting C1, C2, C3, the classical action can be rewritten as

Scl = m

2(t − t0)

(
x2 − 2xx0 + x2

0

)
.

Applying (20), we find the fluctuation factor f

−1

2t
− ḟ

f
= 0 ⇒ f = C4/

√
(t − t0).

Finally the requirement (21) fixes C4 and

Kfree(x, t; x0, t0) = m√
2π ih̄(t − t0)

e
i
h̄

m
2t

(x−x0)
2
. (23)

Incidentally, (22) can be solved to give

xcl = x0 + B(t − to).

2.2. The simple harmonic oscillator

In this case F1 = mw2/2 and G1 = 0, J1 = 0. This yields

F = mw

2
tan[w(C1 − t)], G = C2

cos[w(C1 − t)]
, J = C3 +

C2
2

2mw
tan[w(C1 − t)].

Applying (15) we get

ẋ = w tan[w(C1 − t)]x +
C2

m cos[w(C1 − t)]

= mw sin[w(C1 − t)]x + C2

m cos[w(C1 − t)]
. (24)

Free specifiability of ẋ0 gives w(C1 − t0) = π/2 and mwx0 + C2 = 0. The S(x0, t0) = 0
condition gives

S(x0, t0) = x0mw + C2

2w
ẋ0 + C3 = 0
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which again makes C3 = 0. So Scl becomes

Scl(x, t) = mw

2
cot[w(t − t0)]x

2 − mwx0

sin[w(t − t0)]
x +

mwx2
0

2
cot[w(t − t0)].

The fluctuation factor f can be calculated as

f = C4/
√

sin[w(t − t0)]

so that the propagator becomes

K(x, t; x0, t0) =
√

mw

2π ih̄ sin[w(t − t0)]

× exp

{
i

h̄

[
mw

2

((
x2 + x2

0

)
cot[w(t − t0)] − 2xx0

sin[w(t − t0)]

)]}
. (25)

The classical solution is

xcl = x0 cos[w(t − t0)] +
C5

m
sin[w(t − t0)].

2.3. The driven harmonic oscillator

The function G1(t) in the potential (13) corresponds to a driving term. If it is non-zero, of
course the classical solution and the classical action will change. But the fluctuation factor f

depends only on F.
Therefore, the fluctuation factor of a driven harmonic oscillator is the same as that of

the undriven one, independent of the time dependence of the driving function, even if the
frequency is also time dependent. This verifies and generalizes the result of section 2.7 of [7].
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